

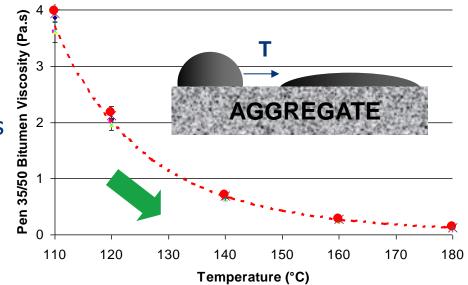
Additives for Warm Mix Asphalt

Warm Mix Asphalt technologies

Cecabase® RT technology

Advantages of Cecabase® RT

Examples of field jobs


Warm Mix Asphalt technologies

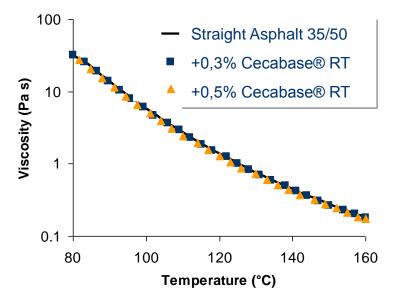
Why do we use **hot** mixes ?

High temperatures are necessary:

- To remove water from the aggregates
- To reduce the asphalt viscosity

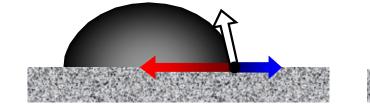
Innovative warm mix technologies can decrease process temperatures while keeping a sufficient workability

- Reduction of the heating of aggregates (~ 95% of the mix) is used by all techniques
- Warm Mix Asphalt (WMA) is typically produced and laid with a 15 to 50°C reduction compared to Hot Mix Asphalt (HMA) – No universal standard definition of WMA



Surfactant additives – How it works

The addition of a liquid **surfactant** (< 1 wt% in the binder) changes interfacial properties of the mix without changing the asphalt binder rheology

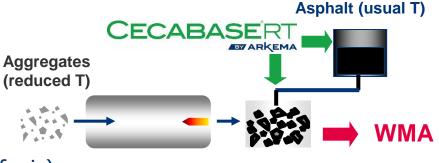

Three main effects :

- Improved coating at lower temperature thanks to surface tension reduction at the binder/ aggregate interface
- Improved workability of the mix thanks to the reduction of internal frictions at the various interfaces
- Improved stripping resistance with the surfactant at the interface

Chemical additive

ARKEMA

Cecabase[®] RT technology

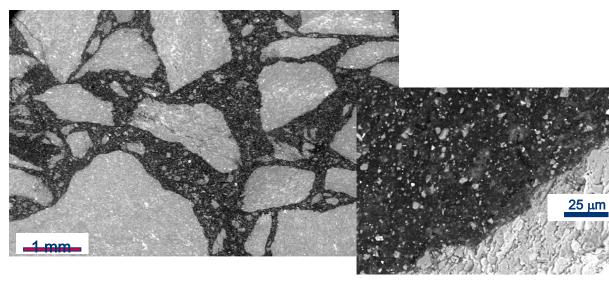


How to use Cecabase® RT

- Typical properties of the additive :
 - Liquid Viscosity < 1000 cPo at 20°C
 - Density : ~ 1.00
 - Flash point : > 200°C
 - Readily soluble in asphalt binder
 - Packaging : bulk, ~1000 kg IBC, ~200 kg drums (1 drum eq. to 1000T of mix)

How to use Cecabase[®] RT :

- In line or **batch** addition to the asphalt binder
- **0.3 to 0.5%** dosage based on total binder weight
- **Compatible** with all kinds of binders no curing time
- Stable in stored asphalt binder over 7 days
- Mix production temperature is reduced to 120-140°C depending on mix type :
 - Heating of aggregates is typically \sim 40°C less than the corresponding HMA
 - Binder temperature remains the same as HMA
- Good compaction is ensured down to 90-110°C



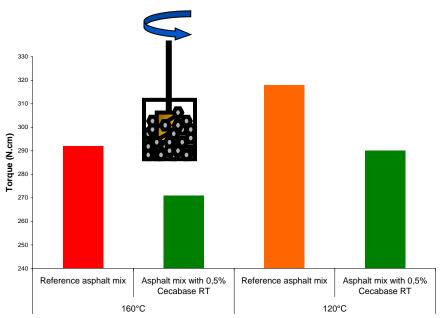
Effects of Cecabase® RT

No change in Asphalt penetration grade or R&B temperature

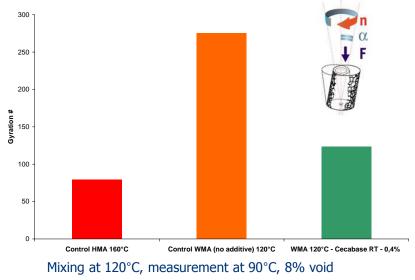
	50/70 Asphalt	50/70 Asphalt + 0.5% CB RT	30/45 Asphalt	30/45 Asphalt +0.5% CB RT	SBS modified Asphalt	SBS modified Asphalt +0.5% RT
Penetration (1/10mm)	51	50	33	37	52	56
Ring and Ball (°C)	51.2	50.8	54.2	53.6	57.8	57.2

Electron microscopy shows no difference of mix with HMA :

- Good distribution of aggregates
- Good coverage of aggregates (even fines)

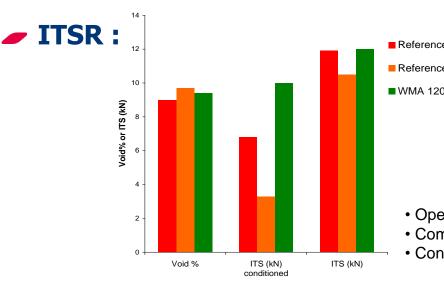


Workability effect of Cecabase® RT


Evaluation of the workability of WMA in the lab is challenging

Only small differences are observed with standard compaction tests (Marshall)

- Evaluation by laboratory Baustofflabor Hamburg, following standard German test for workability
- Torque recording of a screw type rotational device introduced in the mix :



- Test based on the recommendations on report 691 from NCHRP (US)
- Comparison of the number of gyrations required to achieve a given void % with a gyratory compactor :

Mechanical characterization

Improvements of adhesion are achieved with Cecabase[®] RT

	TSR
Hot Mix Asphalt	0.58
WMA without Additive	0.31
WMA with Cecabase RT	0.84
	WMA without Additive WMA with

• Open-graded friction course with modified binder, PG 76-28

Compaction PCG 600kPa, 40 gyrations

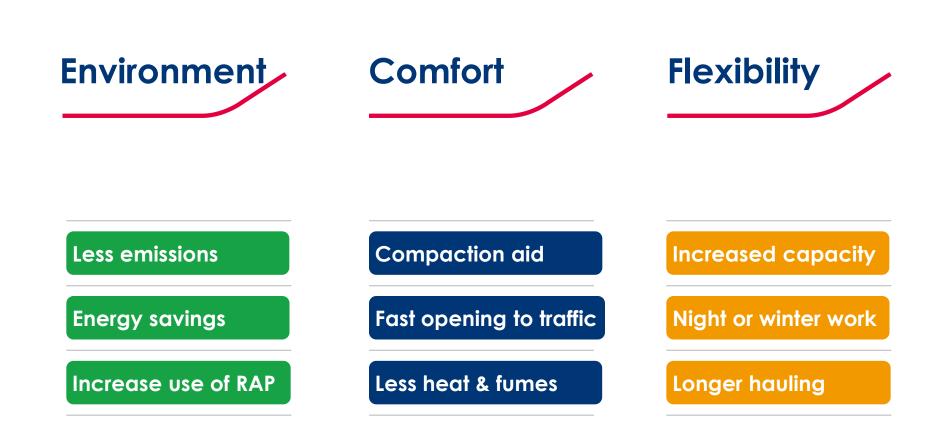
Conditioning 1 day in water at 60°C

Hamburg test :

	Gmm (Max. theor. Specific gravity)	Air voids (%)	Max. rut depth (mm)
Hot Mix Asphalt	2.425	6.95	-13.3
WMA with Cecabase RT	2.445	7.2	-9.1

AASHTO T324 - 0/25mm mix - Shear Gyratory Compactor - 20,000 wheel passes - In water at 50°C

Other results are available : Duriez, rutting test, Fatigue ...

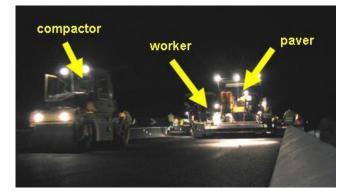


Advantages of Cecabase[®] RT

WMA Advantages with Cecabase[®] RT

Reduction of gas emissions

Typical values <u>measured</u> at the **plant** stack (production of very thin asphalt cement) :


	CO ₂	Eq. NO ₂	Τνος	PAH
	(Nm ³ /ton)	(g/ton)	(g/ton)	(µg/ton)
НМА	14.6	6.8	80.6	78.6
WMA	9.0	5.0	14.3	35.5
	-38%	-26%	-83%	-55%

Measurements taken on job site, on a worker, a paver driver and a compactor driver :

More than 20 different polyaromatics (PAH) measured – example :

Naphthalene (mg/m3)	Worker	Paver	Compactor
НМА	0.01549	0.0097	*
WMA	0.0053	0.0045	0.0019
	-66%	-54%	*

Both HMA and WMA are well below exposure limits (close to detection limits)

Energy cost – typically 20-30% savings

Two examples of measurements at different mixing plants :

Very Thin Asphalt Concrete

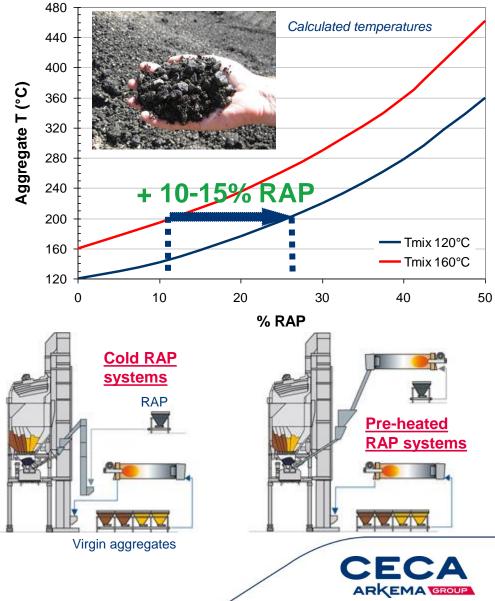
- French 'BBTM' wearing course
- Polymer modified asphalt
- HMA: at 170°C
- WMA: 0.4wt% of additive in the binder

	Production T°C	Energy m3 gas / ton	
Hot Mix Asphalt	170	5,94	
Warm Mix Asphalt	130	4,94	
31% gas sa	avings		

Stone Mastic Asphalt (SMA)

- Polymer modified asphalt and fibers
- HMA: at 172°C
- WMA: 0.35wt% of additive in the binder

	Production T°C	Energy m3 gas / ton	
Hot Mix Asphalt	172	6,34	
Warm Mix Asphalt	135	4,64	
23% gas sa	avings	\checkmark	


- In some cases the savings compensate the cost of the additive
- A simple but well-correlated calculation sheet is available from CECA to evaluate energy savings at your plant

Increased use of recycled material

- Using Cecabase[®] RT you can increase the amount of RAP introduced in the mix by 10-15% :
 - Easier mix compaction
 - Less overheating of virgin aggregates
 - Working for plants with and without heating systems for RAP
 - Significant reductions of the asphalt mix cost
 - Also possible with shingles (RAS) and crumb rubber (CRA)

Use as Compaction Aid

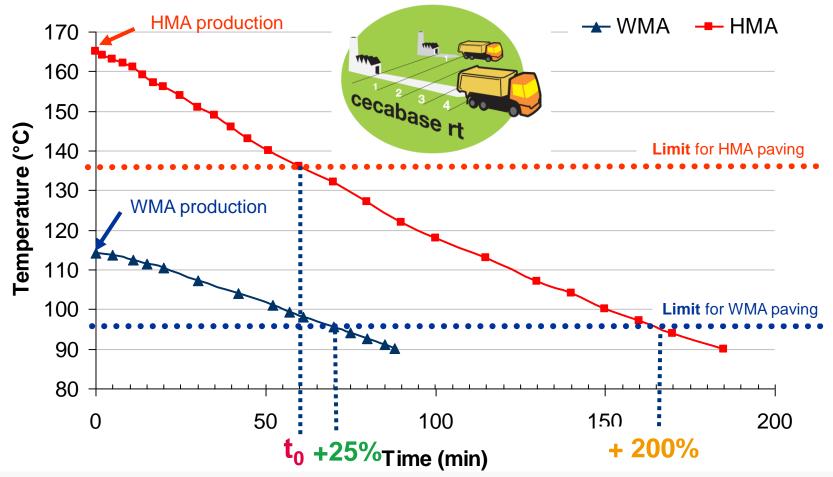
- The workability effect of Cecabase[®] RT can be used to achieve the desired compaction target <u>at Hot Mix</u> <u>temperatures</u> in various cases :
 - Faster progression : typically fewer compaction passes are required compared to HMA without additive
 - Gives more security for "difficult" mixes (high-end void%)
 - Increase chance of getting compaction bonus
 - Improve workability of stiff mixes (high RAP ...)
 - Ability to work at <0°C outside temperature
- Workability effect disappear upon cooling (<~90°C); the additive does not alter mechanical performances at cold temperatures (no rutting or brittling effects)
- The faster compaction and cooling is also useful for quicker opening to traffic :
 - Work in areas with heavy traffic
 - Work in airports
 - Less disturbances to the neighborhood

Reduction of dust and fumes

Typical reductions measured on the paver (SMA job) :

	Dust	Fumes	"Mix of Pollutants"	
	(mg/m ³)	(mg/m ³)	(mg/m ³)	
НМА	12	11.4	12	
WMA	3.5	3	2.9	
	-71%	-74%	-76%	

Similar reductions are measured at the plant :



Increase of Production rate

- In some cases, residence time of aggregates in the barrel can be decreased (lower heating T) without changing the burner settings
- <u>Case study</u> : an increase from 210 to 280 tons of mix/hr (~ 30% increase) was possible when switching from HMA to WMA
- Useful during peak season or for debottlenecking
- Flexible technology : easy to switch from HMA to WMA and back

Longer hauling

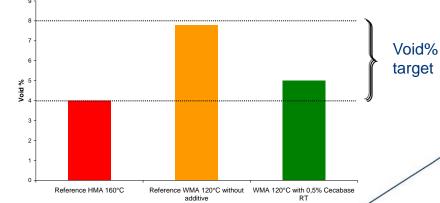
A WMA with Cecabase[®] RT may be paved up to 25% later than standard HMA

A HMA with Cecabase[®] RT may be paved after a hauling time up to 3 times longer

ARKEMA GROUP

Examples of field jobs

Atlanroute (France) - 2004



First field test for technology validation :

- 300 tons of mix using standard equipment (plant & paving machines)
- Continuous dryer/mixer; All production parameters followed
- 10 mm nominal max aggregate size dense coarse graded mix
- Asphalt binder 35/50 penetration :

	Production (°C)	Laying (°C)	Compaction (°C)
Hot Mix Asphalt	160	160	135
WMA without Additive	120	115	90
WMA with Cecabase® RT	120	115	90

- Constant compaction conditions
- Troxler (gamma rays absorption)
- Core sampling to double-check :

Examples of field jobs - France

Bordeaux 2008 – High traffic road

- High modulus asphalt cement ("EME")
- 10/20 [1/10mm] asphalt
- Produced at 130°C (normally 170°C). Laid down at 125°C
- Average density 95,6%

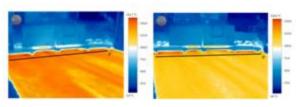
St Flour 2009 – Highway A75

- Open graded friction course ("BBTM") Thin layer 2,5 cm
- 5,6% binder, polymer modified Styrelf 13-60 0,4% Cecabase[®] RT
- 4000 tons produced at 135°C, paved at 120°C, compacted at 110°C

Gaillac 2011 – BBSG

- Standard 0/10 mm wearing course (BBSG), 6 cm layer
- Cecabase[®] RT used at 0.4%, added in tank 5 days before
- 500 tons paved at 120°C

Examples of field jobs - Europe


Poland 2007 – Stone Mastic Asphalt (SMA)

- 0-8 mm aggregates 0.4% fibers in the mix
- Asphalt binder Pen. 50 + 3% SBS 0,4% Cecabase[®] RT
- 3000 tons produced at 130°C, paved at 120°C, compacted at 100°C

Russia (Kazan) 2009 – Freezing conditions

- Base course layer Asphalt 60/90 penetration 0,4% Cecabase[®] RT
- 120 km transport time (2 hours), outside temperature -5°C
- 800 tons produced at 165°C and paved at 130°C

Denmark 2011 – Stone Mastic Asphalt (SMA)

- 0-11 mm wearing course, high traffic Fibers into the mix
- 5,7% of polymer modified asphalt 0,35% Cecabase[®] RT
- Mix produced at 135°C vs 172°C for the control HMA

Italy (Padova) 2012

- Fine gradation D8 type 15% RAP added cold at the plant
- Asphalt 70/100 penetration 0,4% Cecabase[®] RT Bio10
- Mix produced at 150°C, paved at 130°C, compacted at <130°C

Examples of field jobs - America

New York State 2008 – 2 different jobs

- 1300T dense-graded mix with 30% RAP (Road 31 along Seneca River)
- 1000T dense-graded mix without RAP (Road 18 near Utica)
- Production at 120-130°C, paved at 120°C with good workability

Canada (Alberta) 2009 – 25,000 tons job

- Dense graded mix without RAP (gravel pit aggregates) Interstate 35
- Asphalt binder 200-300 Pen. with antistrip + 0.2% Cecabase[®] RT
- Produced at 120°C (vs 150°C for control HMA)

California 2010 – Caltrans project with crumb rubber

- ✓ 12.5mm gap graded mix Asphalt PG 64-16 with 18% scrap tire
- 0.4% Cecabase[®] RT Produced at 130°C (vs 165°C for control HMA)
- ✓ Tested on Heavy Vehicle Simulator (HVS) → Cecabase[®] RT WMA is more rut resistant than control HMA

Tennessee (Sevierville) 2012

- Mix with difficult limestone aggregate 15% RAP high traffic road
- Asphalt PG64-22 Cecabase[®] RT and antistrip
- Night work, light rain Mix produced at 130°C, compacted at 113°C

Examples of field jobs – Asia & LatAm

Australia 2008 – High %RAP mix

- Base and Wearing Courses Type H-10mm 30 and 40% RAP respectively
- Paving temperatures : 108-115°C
- Average compaction around 95%

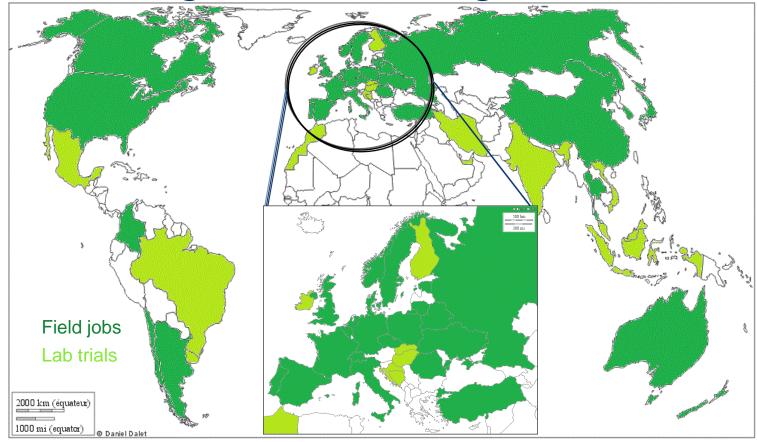
Japan 2009

- Open graded type
- -30°C to -50°C temperature decrease Rainy conditions
- 3000 tons produced at 130°C, paved at 120°C, compacted at 100°C

Argentina 2010

- Open graded type mix Asphalt grade CA-30 (pen 50/60) with 0,4% Cecabase[®] RT
- Temperature decreased to 130°C
- Core sampling

China 2011


- 0-8 mm aggregates 0.4% fibers in the mix
- Asphalt binder Pen. 50 + 3% SBS 0,4% Cecabase[®] RT
- 3000 tons produced at 130°C, paved at 120°C, compacted at 100°C

100°C

A real global coverage

Today Cecabase[®] RT is present in more than 50 countries

- More than 150 different customers have chosen Cecabase[®] RT additives
- Several millions tons of Warm Mix Asphalt are produced each year with Cecabase[®] RT technology

ARKEMA GROUP

Cecabase[®] RT - the right choice !

- A simple way to reduce temperature of asphalt mixes by ~ 40°C by the addition of a liquid additive :
 - Patented technology used since 2004 on the field
 - Robust, work with all binders and asphalt mixes
 - No plant modification or high maintenance costs
 - Most cost-competitive solution among additives
 - Systematic back-up of CECA technical experts
- Mechanical properties of WMA are similar to those obtained with a control HMA
- Benefit from immediate advantages :
 - Environment : reduction of emissions, gas savings, use of RAP
 - **Comfort** : compaction aid, less heat & fumes, quick opening to traffic
 - Flexibility : increased plant capacity, longer hauling, night or off-season work

CECABASE[®]RT

Thank you !

